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THF BAYESIAN INFERENCE METHOD
AND ITS APPLTCATION TO RELIABILITY PROBLZMS

1.0 TINTRODUCTION AND SUMMARY

This report represents a very bas.ic introducticn to what 1s referred to
as Bayes method in statistics. The author’s interest in this cubject relates
to its application to hardware reliability characterization. Section 2
will clarify this connection in terms of mathematical modeling. Preliminar-
ily one should simply be reminded that the overation or use of nominally
identical equipments results ultimately in failures whose times of occurrence
may be broadly distributed. Thus there is a strong stochastic or chance
aspect to hardware serviceability. Causality is in no way compromised in
this. One simply has to recognize that similar hardware items are at least
microscopically different and they may see different stresses in service.
What one doesn't know about the situation is outcome determining.

Using limited informa:ion most efficiently and optimally supporting the
decision-making process in the face of uncertainty is the business of statis-
tical inference. Most engincering use of statistics at the present time
employs the classical or frequantist approach pioneered by R. A. Fisher.

The Bayes method is an appealing alternative based on a somewhat different
world view. The two are compared and contrasted in the following pages.

At the heart of both classical and Baves methods is the concept of like-
lihood, a measure of the a priori probability that a particular observational
outcome will occur given a specification of the statistical model parameters.
Likelihood, the idea of summarizing data collectively and completely via
sufficient statistics, and confidence statements are all discussed under the
reliability mathematical modeling heading.

Bayesian inference proccsses probability statements via Bayes theoren.
Probability in i¢»ds setting is subjective and conditional in contrast to what
is claimed to be ve okjective classical viewpoint. Bayes theorem itself is
derived as a straightforward consequence of one of the axioms of probability
theory. As such, as is so often also the case in observational science, it
must be evaluated on the basis of its consequences rather than its origins.
The important structural properties of Bayesian inference that permit its
use and evaluation are developed in th*< report.

Several examples of the application of Bayesian theory to interesting
reliability problems are provided. The first is a textbook kind of pedagogic
illustration using the familiar exponential model. Other problems involving
different statistical models, continuously or discretely distributed data,
and the use of numerical methods help delineate the scope and usefulness of
Bayes techniques.
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2.0 RELIABILITY MATHEMATICAL MODELING

Mathematical modeling of reliability situations plays essentially the
same role as mathematical descriptions in more fundamental settings in the
physical sciences. Thus one achieves economy of thought and provides a
basis for developing understanding and insights by giving simple mathematical
expression to attributes of areas of interest. Here "simple” usually means
expressible In terms of relatively few known functions rather than trivial
or easy to understand without advanced training. Reliability is a success/
failure oriented concern. One asks questions like what is the mean time
between failures for a particular piece of hardware or what is the probabil-
ity of surviving a mission or task of specified duration. Actual failure
times depend on hardware construction and use factors, scme aspe:xts of which
are unknown. As a result, times to failure for similar (nominally identical)
equipments used in similar ways differ, i.e., time to failure is a dictributed
random variable or stochastic quantity. An analytical representation of
the distributional aspects of time to fallure constitutes what is called a
statistical failure model. This takes several interrelated forms in relia-
bility work. Thus, beginning with the time~to-failure probability density
function £(t) for completeness

£(t) = £(t) . oY)

The cumulative (also called the distribution function) ~f Eq. (1) is the
unreliability U(t)

. ,
ut) = f f(t) dt . ‘ (2)

- 00
Reliability, the probability of successful operation through tiwe t, is

-]

R(t) = 1-0(t) = J £(t) dt . (3)
t

Finally, hazard rate or the iastantaneous rate of failure is

£(t) £(t)

= o] - 4
R(t) f £(t) dt *)
t

A(e) =

Occasionally we will speak of the quantities exhibited or defined by Eqs. (1)
through (4) collectively as the reliability functions associated with a prob-
lem of interest. Use of this term "reliability function” in the singular will
refer to R(t) alone. Equations (1) through (4) have taken f(t) to be funda-
mental while the other reliability functions are defined in terms of f(t).
Actually there is complete reciprocity among the reliability functions. Any
one implies the other three. For example, in terms of the hazard rate

A(t) A(t) , (5a)

S—

R(t) (5b)

b

t
exp(—[ A(t) de |
o J



t
U(t) = l-exp[—[ Alt) dt] , (5¢)
)

t
Cfl(t) = A(t)exp[—f A(t)dt} . (54d)
)

As a practical matter then, modeling a reliability problem typically
translates into characterizing the form of one of the reliability functions
and specifying the parameters of this statistical failure model. These two
issues, model selection and parameter evaluation, should be treated quite
separately. Methods of parameter evaluation don't shed much light on the
appropriateness of a model choice. While the discussion in this report is
built around some standard important models, motivation for them is not
developed here. Statistical failure models are discussed in standard relia-
bility texts [l]. Most of them are familiar distributions that are presented
in statistics texts {2] as well. 1In particular the very commonly used expo—
nential model has been motivated by Epstein [3] and Barlow and Proschan [4].
For our present purpose we suppose an appropriate model has been selected and
concentrate on parameter characterization from the classical and especially

the Bayesian viewpoints.
2.1 Classical and Bayesian Viewpoints Compared

In reliability work both the classical and Bayesian methods of statis-
tical inference begin from the same point of departure ~— a specified statis-
tical model. In each case the problem of interest is to specify the parameter
or parameters of the model on the basis of information acquired concerning
the operation of the hardware in question. This information 1s developed in
the traditionally most tractable form if a decision is made concerning what
constitutes acceptable equipment performance. Then passages through these
performance boundaries can be monitored to obtain a set of failure times.

It is these failure times that are the observable outcomes of a life testing
study. The parameters of the statistical model themselves cannot be directly
observed. Rather, inferences concerning the model parameters must be drawn
based on the failure times. That is, what must the parameters be to be

most consistent with the set of actually observed failure times? We will
explore the answers to this question obtained by both classical and Bayesian

statisticians.

In the interest of proceeding within a more specific and perhaps familiar
framework let us now introduce the exponential failure model, which is
characterized by a constant hazard rate. Equations (5) become

AE) = A (A20) | (6a)
R(t) = e (120, t20) | (6b)
u(t) = 1-et (x20, £20) (6c)
£(t) = re b (A>0, t>0) . (6d)

In Eqs. (6) the reliability functions depend on time t and the single model
parameter . Classically A 1s understood to be a constant having an unknown
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value. Statistical inference 1s designed to allow one to make as strong a
statement as possible about the true value of X as determined indirectly by
observations of failure times. Classically, there are various ways of ob-
taining these "estimates” of A. For example, in the case of a complete
sample (all items exercised to failure) the mean failure time can be calcu~
lated from the data and equated to the expected value of t obtained using
Eq. (6d). Thus, if there are n failures labeled ty, 1=1,2,...n,

o

110
E(t) = | tf(t)de= T = — 1oty (7)
o i=1

This 1s referred to as the method of matching moments and readily generalizes
to yleld simultaneous equaticns for more than one modeling parameter. Other
estimation procedures such as probabilizy plotting and regression anaiysis are
also available. However, we shall limit further discussion to the maximum
likelihood method. Maximum likelihood estimators have some appealing statis—
tical properties (unbiasedness, minimum variance) and actually incorporate
sampling information in the same way as the Bayes approach does /via the
likelihood function). This topic will be pursued in Section Z.2.

The Bayesian interpretation of reliability modeling differs from the
classical one in a subtle but important way. Agaln model parameters are
taken to be unknown constants; but this terminology has different meanings
for classical and Bayesian statisticians. Classically, an unknown constant
is a dispersionless scalar quantity of unspecified value. A Bayesian repre-
sents the "unknownness" aspect by a probability density function. Mathe~
matically then, a model parameter is treated as a randam variable. The
Bayesian hastens to emphssize that the parameter is not actually variable
in the sense of changing, but that its true value is simply not accessible
(in an experiment of finite size). The nomenclature "random quantity" has
been introduced to make this distinction.

If we reflect on the matter, thinking of an unknown constant as dis-
tributed shouldn't seem too bizarre. Do we not characterize direct (as
opposed to indirect or inferential) measurements of stable quantities in
exactly this way? Thus, several measurements are t. :en and processed
numerically to yield typically both central tendency and dispersion mea—
sures. The quantity in question (length, weight, concentration, etc.) is
understood to be constant but unknown within the precision of the measurement
technique. Its valuve is formally represented as distributed.

This can be looked at in another way. Taking a constant to be distrib-
uted implies assigning probability to situations that don't occur. Again,
there is classical precedent for this. One can shuffle a standard pack of
playing cards and inquire with wha. probability the top most card is the jack
of diamonds or some other specified card. Given no further information the
answer is 1/52. Distributing probability equally among the alternatives in
this way reflects only on our uncertainty of the situation and has nothing
to do with any lack of definiteness with respect to how the cards are actually
arranged. In thinking about mixing cards, we are dealing with a repeatable
process having a denumerable set of possible outcomes. It is possible to
realize the frequency limiting behavior that in the long run, on the average
the jack of diamonds will turn up on top 100/52 percent of the time. What



the Bayesian does is assert the relevance of assigning probabilities to
situations that do not necessarily exhibit a frequency limit.

In subsequent sections of the report we will examine some of the methods
of statistical inference in greater detail. To bring this section to a close,
let us take note of the major operational differences implied by the two

approaches -— classical and Bayesian.

Classically, statistical model parameters are unknown constants. Infer-
ence methods ylield parameter estimates. These estimators themselves turn
out to be distributed (dependent on the unknown true parameter values).
Hence a substantial part of classical statistical inference addresses devel-
oping the statistical properties (biasedness, efficiency, etc.) of estimators.
One implication of this is that confidence statements do not relate in a
very satisfactory way to model parameters directly. Another property of clas—-
sical inference situations is that conclusions often depend on experimental
censoring procedures (stopping rules).

Let us contrast the Bayesian situation. Model parameters are random
quantities described directly in distributional terms. Inference proceeds
by modifying the prior parameter distribution (probability density function)
via the sample likelihood to obtain a posterior distribution. Thus in con-
trast to classical inference the parameter space is directly accessible.
There are neither estimators nor complicated estimator statistics. Confidence
intervals are developed quite naturally by integrating the posterior density
and directly represent valid probabllity statements on the model parameters.
Typically, how a particular experimental outcome happens to be realized is
of no consequence -— the stopping rule is said to be noninformative.

Bayes methods provide the capability of integrating previous experience
(through the prior) with what is learned from the current round of testing.
So far this description makes Bayesian inference sound like a very appealing
alternative. It 1s only falr to temper this somewhat. The key difficulty
is choosing an appropriate prior. How does one cast what one knows generally
about a hardware item into a distributional description of a modeling parame—
ter? One approach is to ignore this history and construct what is called an
ignorance prior. From this point of departure one would like to see con—
clusions drawn classically and from the Bayesian viewpoint coalesce in
reflecting only information developed in the current test. This has been
demonstrated under a number of circumstances. However, ignorance priors
are typically improper (non—normalizable) and a focus of continuing debate.

2.2 Likelihood

In the next several sections of the report we discuss statistical concepts
that are important from both the classical and Bayesian viewpoints. This
will be done by developing the classical maximum likelihood approach and then
comparing with Bayes method in Section 3.0 and its subsections. The concept
of likelihood is quite fundamental in this. At least one author [5] places
likelihood at the heart of an approach to statistical inference (method of
support) without being either a classicist or Bayesian.

We have talked about likelihood and now need to define it. To do this
we need to introduce the concept of conditional probability (Bayesians view



all probabilities as conditional on previous history.). Reliability problems
represent an excellent setting in which to discuss conditional probability.
Consider a 1life test that yields time-to-failure data. Then the elements of
the discussion are a statistical model not being questioned, a set of statis-—
tical hypotheses H being evaluated, and the experimental results ov data D.
When a model has been specified and a particular hypothesis (such as specifi-
cation of the model parameters) imagined to be true, probabilities for an
exhaustive set of mutually exclusive consequences or outcomes (all possible

_ forms the data might have taken) can be calculated. Since one or another of
the potential outcomes must occur with certainty, these probabilities have

to sum to unity. The problem of statistical inference involves inverting
this philosophy. That is, a particular consequence is available as an
experimental fcct and one wishes to make an associated statement about the
probable validity of one or more hypotheses. In probability language the
ligelithood L of the bhypothesis given the data is defined as

L(H|D) « P(D|H) , (8)

where the notation reads the probability of the data D given the hypothesis

H or the probability of D conditioned on H. If a particular hypothesis were
known to be true, then p(D|H) would be a true probability (i.e., sum or inte-
grate to unity on D). In the likelihood context Eq. (8) refers to a fixed D
and is intended to span a number of candidate hypotheses H (or a range of
model parameter values). Viewed in this way Eq. (8) is not a true probability

since hypothesis space cannot generally be partitioned in a mutually exclusive,

exhaustive manner.

Let us return to consideration of a set of failure times obtained in
sampling from an exponential time-to-failure distribution. The data are
failure times for failed units and survival times for unfailed units. The
hypothesis is that ) is the true value of the model parameter. For the sake
of definiteness, let us consider the testing of n nominally identical items
until the occurrence of the rth failure. The 1likelihood is the joint prob-
ability given X that the failure times are the observed ty, i = 1,2,...r, and
that n = r units survive to suspension of the test at typ. Using Eqs. (6d)
and (6b), Eq. (8) becomes

r -I n-r
Aty =At,

Le | I xe "idt;||e . (9)
-1 ]

The observation intervals dty are present because Eq. (6d) is a probability
density function. However, the timing resolution imposed on a life testing
experiment is largely irrelevant to the use of the likelihood function as a
measure of support provided to different hypotheses by a particular body of .

r
data. Thus the quantity I dt; may be alsorbed into the proportionality

i=1
constant implicit in Eq. (9). Furthermore, since one is ordinarily interested
only in relative likelihoods against a particular sampling outcome, Eq. (9)
is usually written as the equality (interpreted as dimensionless)

r ~1 =T
L= {- T ae i [e‘“r . (10)
L i=1
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Equation (10) has been specialized to the exponential statistical failure
model for illustrative purposes. However, its structure is similar for any
situation where failures are independent. That is, the likelihood is a
product of factors representing relative probabilitier, of observed failures
(via the time-to-failure pdf's) and observed successes (via the reliability).
If an unfailed unit is withdrawn prior to termination of the test, its proper
weighting is R(ty) where ty, is the time of w.tharawal.

2.3 Sufficient Statistics

Equation (10) can be written more compactly via some rearrangement as

L=2"e?T | (11)
where
r
T= ) t; + (a-r)t,. . (12)
i=1

Equation (12) represents, on a per unit basis, the total exposure (to oper-
ating conditions) of the hardware being evaluated. Conventionally then, T

is referred to as the total time on test. From Eq. (11) we see that the

actual time-~to—failure sampling data influence the likelihood functinn only
through r, the number of failures observed, and T, the total test time. These
quantities r and T are said to be sufficient for a complete description of the
problem at hand. Interestingly the number of items tested n and the individual
failure times ty are not of specific concern beyond their impact on T.

We will see in Section 3.3 that the existence of conjugate distribu-—
tions is closely related to situations that admit to description in terms of
sufficient statistics. In the Bayesian context, at least, it usually doesn't
matter how the particular values of r and T are obtained. That is, particular
values of r and T may have resulted because:

1. The test plan called for stopping at the rth failure.
2. A time-terminated test was planned and executed.

3. Either of the above plans was altered when one or more units had to
be withdrawn during the test for other purposes.

For the Bayesian all of these situations would be characterized by the same r
and T ard exactly the same inferences drawn. The experimental stopping rule
is said to be noninformative ‘n such a case. In contrast,classical procedures
will typically distinguishk the above situations and treat failure—terminated
and time~terminated tests differently.

2.4 Maximum Likelihood

R. A. Fisher [6] introduced the idea that estimates of the values of the
parameters of a statistical model could be obtained by maximizing the likeli-
hood function given a particular experimental outcome. That is, for what
model parameter values are the observed data collectively more probable than



for any other parameter choices? If the likelihood is a function L(Dlai)
of the data D (or corresponding sufficient statistics) and model parameters
a4, the maximum likelihood estimators are obtained by solving the simultaneous

equations (one for each oj)
a |
—— | L(D a-)} =0 . (13)
Bai [ leg B

In the case of the one~parameter exponential model and using Eq. (11), this
reduces to the single statement

d r =AT | _
EK-[A e } =0 . (14)

Equation (14) can be solved directly to obtain the maximum-likelihood estimator
A. However, it is equivalent and frequently simpler to maximize the logarithm
of the likelihood. For the exponential problem we have been considering,

this yields

N .
- 15
N [r lnhi - XTJ 0 . (15)

Solving Eq. (15) the maximum—-likelihood estimator of the model parameter X is

= (16)

Hin

As is first apparent from the structure of Eq. (11), the maximum-likelihood
estimator for this problem depends only on the sufficient statistiecs r and
T. However, if the entire life testing experiment is repeated with another
sample drawn from the same parent population, different values of r or T or
both will be obtained. It is clear then that the estimator \ is itself a
distributed random variable. The distributional properties of » for this
problem have been worked out in a pioneering paper by Epstein and Sobel [7].
They found that the quantity z = 2rx /3 is x2 distributed with 2r degrees of

freedom. That is

g(z) = (——1—] LTl 22 (17)
t21’(r-1)1

Using standard variable transformation methods (see Appendix B of Ref. 8 for
example) Eq. (17) implles that X is distributed as

h(}) =

frk] -r)/X (18)

(z- 1)@\1
Evaluation of Eq. (18) requires that the true modeling parameter 3 be known.

In engineering practice one is rarely, if ever, so fortunate as to have this
information available. The Bayesian approach turns the problem around. One
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is not concerned about the distribution of estimators. Rather, a single
such result is recognized as an experimental fact and one inquires about the
range of true parameter values that are compatible with it. To assist in
visualizing this concept Fig. 1 is a plot of the likelihood function [Eq.
(11)] for our example problem. The sufficient statistics, r = 10 and T =
88,827 hours, are developed from the simulated time-to-failure data presented
as Table 1. The maximumlikelihood estimator, A = 1.13 x 10™* hours, is

the abscissa of Fig. 1 for which the corresponding ordinate is maximum as
indicated. However, the figure also shows that there is a high probability
of the observed data being associated with any other parameter value in the
vicinity of the maximum—likelihood estimator.

Likelihood (arbitrary units)

T T -3

0 1 2
Hazard Rate (per 10* hours)

Fig. 1 - Plot of the likelihood function [Eq. (11)] for an
exponential population based on r = 10 failures
observed in T = 88,827 hours total time on test.

Table 1 - Synthesized ordered failure times representing sampling
from an exponential parent population.

TIMES TO FAILURE ANCILLARY INFORMATION

| | |
| | |
| (Hours) | |
! | l
| 265 | - n=20 Samples Placed on Test |
| 934 ! |
| 1171 | Sufficient Statistics: |
| 1350 - I
| 2725 ! r = 10 Failures Observed |
| 3155 | I
| 3542 | T = 88,827 Hours Total |
| 4606 | Test Time ]
| 4892 | |
l 6017 | |
l | I

10



2.5 Confidence Statements

In most situations in engineering or science two numbers are used in re-
porting observational results. These are usually some average or central
tendency measure of repeated measurements and a self-consistency or quality
descriptor called the uncertainty, standard deviation, probable error, etc.
In ordinary observations of directly accessible physical properties (length,
weight, voltage, etc.), this represents the characterization of experimental
error superimposed on the true values in question. When stochastic variables
such as time to failure, number of failures, or total time on test are ob-~
served in replicated experiments, the variability is intrinsic rather than
associated with some limitation of the measurement tool employed. 1In either
situation, one can ask with what probability yet another (future) observation
would fall within a specified range or interval. The interval boundaries in
such a description are called confidence limits (upper and lower) and the
probability is referred to as the confidence level. A confidence statement
is trivially related to the area under (or the cumulative of) the assoclated
probability density function. For example, the probability statement on
z [distributed per Eq. (17)] at a confidence level of 1 - a is

2 2r\ 2 _
P [X(l—a/Z),Zr RS 2 = xa/2,2r] =l-a, a9

which can be evaluated using tabulated quanti}es of the X? distribution. Or,
equivalently, two~sided confidence limits on A at the l1-a confidence level
are given by

_ 2r) . 2r) _
L, = = SAE G =, . (20)
Xa/2,2r X(1-a/2),2r
Common practice is to invert Eq. (20) to obtain what are claimed to be
confidence limits on the model parameter X, i.e.
_i__) 2 A .2
(2r, X(1-a/2),2¢ £ * < (Zr] Xaf2,2r ° | (21

Mann et. al. in Section 8.1.2 of Ref. 1, point out the inconsistency of this
inversion process since classically X is distributed and )\ itself is not.
Equation (21) does have a proper interpretation; namely, that in the long

run 100(1 - a) percent of the different intervals so constructed will contain
the true parameter value A. From the Bayesian viewpoint this confusion
disappears entirely since a distributional model parameter space is always
accessible.
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3.0 STRUCTURE OF BAYES METHOD

Thus far in the report we have looked at some of the general character—
istics of Bayesian inference in conjunction with the development of a pre-
ferred classical approach. Now we turn to the exposition of more specific
structural properties of the Bayes alternative. Bayes theorem itgelf is a
statement relating conditional probabilities. We open this discussion with
a review of the underlying probability ideas.

3.1 Probability

In trying to assimilate in useful ways the results of reliability or
life testing experiments, we are dealing with uncertain events. We do not
know in advance how much time will be required to induce failures in all
items of a test population. Or, if the test time is decided upon initially,
the number of failures that will occur is uncertain. Even after this in-
formation becomes available, the statistical model parameters introduced as
descriptors of the situation remain to some degree uncertain or incompletely
specified. Lindley [9] argues that all uncertainties are of the same genre
and properly measured on a probability scale. The first three chapters of
Ref. 9 contain a very readable discussion of uncertainty and probability
including numerous examples from everyday life. We shall have to be content
with a more terse presentation here.

Statistics texts typlcally develop probability ideas using set theory.
For our own purposes it will suffice to think in terms of the set of possible
outcomes a life test might yield. This we call a sample space. The sample
space may be discrete as in the case where one counts the total number of
failures occurring in a particular test. Continuous sample gpaces are also
commonly encountered such as occurs when individual failure times are specified
to arbitrarily high precision. In either case it is usually desirable to ar—
range that the events or particular sampling outcomes be exclusive and exhaus-
tive. Here exclusive means that one testing result preempts all the other
possibilities. Exhaustive refers to the completeness of the sampling space
description, i.e., no potential outcome has been overlooked in specifying the
range of alternatives. Consider an example. Suppose we set up to run a
life test of duration Tt on n similar equipments. The outcome is that some
number r of failures will occur. This result is exclusive; that is, if r
equals 3, it cannot also be some other number. Furthermore, saying that r
must fall in the range of integers 0,1,...,n exhausts all the possibilities
for the problem. Thus, the set [0,1,...,n} is exclusive and exhaustive for r.

Let us turn now to making some probability statements with respect to
sample spaces. The word "probability” is used as shorthand for the idea of
probability of occurrence of some event or specified element of the sample
space. In mathematical notation we write p(E) for the probability of occur-—
rence of the event E. In.addition to stating what event on which attention
is focused, we need to describe the experiment (stresses imposed, duration,
etc.) and the criteria for determining what ocutcome has occurred (failure
definition). Lindley [9] calls this ancillary information the history H of
the problem. He asserts that every probability statement depends on expres—
sion or at least implicit understanding of the relevant history. This can
be made explicit in the notation by writing p(E|H) which is read the proba-
bility of E given (or conditioned on) H. 1In what follows we share Lindley's
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[9] interpretation and his lead in using the simpler notation omitting H for
most purposes.

An event that is certain to occur is conventionally assigned a probabil-
ity of 1. A probability of zero is taken to describe an event that cannot
possibly happen. An event A that is possible but less than certain has a
probability between these two extremes. Expressed as an inequality, this
statement represents the first law (or convexity rule) of probability

0<pa) <1l . (22)

The second law of probability tells us under what circumstances probabilities
may be added. If A.and B are two exclusive uncertain events, the probability
of one or the other occurring is

p(A or B) = p(A) + p(B) . , (23)

Equation (23) 1is called the addition rule of probability and is readily gener-
alized to more than two events. It is important to remember that it refers

to exclusive events. For example, in casting a standard six~faceted die the
probability of an even number showing in a single throw is p(2) + p(4) + p(6).
Under certain circumstances probabilities may also be multiplied. Thus the
probability that two uncertain events A and B will both occur is

p(A and B) = p(A)p(BlA) . (24)

This is the third or multiplication law of probability. Clearly if A and B
are exclusive, p(B|A) = 0 and Eq. (24) yields the expected result that the
probability of the simultaneous occurrence of mutually exclusive events is
zero. On the other hand suppose a package contains 10 metal parts and 16
plastic parts. Let half the metal components be painted black while one-
fourth of th~ plastic items are also black. These aspects -- type and color
—-— are not exclusive. Thus we can ask the probability of selecting at random
from the carton a black metal part in a single trial. Applying Eq. (24) we
find p(metal and black) = p(metal)p(black if metal) = (10/26)(1/2) = 5/26.
Notice this argument can be reversed yielding p({black and metal) = p(black)x
p(metal if black) = (9/26)(5/9) = 5/26. Consider another example using the
same package of plastic and metal parts. Suppose we ask the probability of

i drawing two metal components in a row in two trials. Equation (24) applies
to this situation also since the outcome of the first trial affects the odds
or chances that apply to the second trial by altering the population being
selected from. Thus p(2 metal) = p(metal)p(metal if metal) = (10/26)(9/25)
= 9/65. :

' Equation (24) can also be extended to include any number of events.
For the case of three events A, B, and C,

P(A and B and C) = p(A)p(BlA)p(ClAB) , (25)

where AB written together in the argument of p(C|AB) means that the probability
{ of C is conditional on both A and B. Equation (25) and its generalization

to larger numbers of events applies to the situation where the results of

previous trials affect the odds applicable to the next and following trials.

Our example in the previous paragraph of a container of mixed parts illustrates




this. However, if the item withdrawn in the first trial were replaced before
the second item was selected, the trials would be independent. That is, the
odds applying to all trials would be the same because of the restoration of the
test population to its original condition prior to each trial. In the case

of independent sampling (B independent of A, C independent of B and A etc.),
p(BJA) = p(B) and p(ClAB) = p(C) so that Eq. (25) takes the simpler form

p(A and B and C) = p(A)p(B)p(C) . (26)

Equation (26) (and its generalization to more events) is a very important
result which applies to tossing coins, casting dice, and the observation of
independent failure times in reliability and life testing situations.

Equations (23) and (24) respectively deal with the addition and multi-
plication of probabilities. The reader is reminded to focus attention also
on the conditional aspects of probability statements. Thus Eq. (23) applies
to exclusive events while the implications of Eq. (24) are more interesting
for events which are not exclusive. We close this section with a fourth
probability law, a statement in which the operations of addition and multi-~
plication occur together. If A and B are two exclusive and exhaustive events
and E is any other uncertain event, then

p(E) = p(A)p(ElA) + p(B)p(EIB) . (27)

Equation (27) readily generalizes to any number of exclusive and exhaustive
events. It is an example of decomposing a quantity of interest in terms of
a complete set of basis functions. Analogous procedures include geometric
projection in Cartesian vector calculus or expansion in terms of a complete
set of orthonormal basis states in the abstract vector calculus of quantum
mechanics. In the Bayesian statistics context applying Eq. (27) is often
colorfully referred to as "extending the conversation.” Actually Eq. (27)
can be derived from Eqs. (23) and (24) as is shown in Appendix A. It is
therefore an example of a probability theorem. For the axiomatic basis or
externally accepted structure of the probability language only Eqs. (22)
through (24) are needed. This concise grammar is the key to speaking and
understanding the rich calculus of probabilities.

3.2 Bayes Theorem

Bayes theorem was established over 200 years ago [11l] as the central
probability statement on which the Bayesian inference method is built. Given
the background of the previous section, this famous result can be developed
with remarkable ease. From Eq. (24) the probability that two uncertain
events A and B will both occur is p(A and B) = p(A)p(BlA). The order of
labeling the events is immaterial so that

p(A)p(BIA) = p(B)p(AlB) (28)

a result we have already seen illustrated by an example in the previous
section of the report. A trivial rearrangement yields

_ pa[B)p®)
p(BlA) = —m (29)
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which is Bayes theorem. For our statistical inference or hypothesis testing
purposes in reliability or life tesing situations, the event A is the body
of data D and B represents some hypothesis H. Equation (29) becomes

p(D|H)p(H)

p(D) ’ (30)

p(H|D) =

where the factor p(D]H) is recognized as the kernel of the likelihood defined
by Eq. (8). It may happen that there are several hypotheses that one wishes
to test for compatibility with the data D. If these can be sorted out into an
exclusive and exhaustive set having k elements Hi, the denominator of Eq. (30)
can be expanded via a generalized Eq. (27) to yield the set of k results

p(D[H ) p(HY
p(H;[D) = - . (31)
izl P(Hi)P(Din)

Equation (31) is a commonly encountered form of Bayes theorem for a discrete
decomposition of hypothesis space [1, 10]. The analog to Eq. (31) where we
have selected a particular statistical model and are dealing with a continuous
range of possible parameter values X is '

__pnpM)
p(A[D) = . (32)

f p(A)p(D]1)dA

The extension to models having more than one parameter is straightforward.
Notice that the appearance of the factor p(DlHi) or p(D|A) in both the numer- .-
ator and denominator of Eqs. (31) and (32) allows the corresponding likelihood
[Eq. (8)] to be unambiguously substituted without regard to actually evaluat-
ing the missing proportionality constant. Thus making the parametric depend-
ence of L explicit Eq. (32) becomes

_ _LOID)POY)
p(A[D) = : (33)

[ p(O)L(A[D)ar

A similar argument applies to the prior distributions in Eqs. (31) through
(33). Thus the probability mass functions p(H;) for the discrete case and
the probability density p(A) for the continuous case need be specified only
within an arbitrary multiplicative constant for the purpose of implementing
Bayes theorem in the forms displayed. Said another way, the Bayesian pos-—
terior p(HyID) or p(i{D) will turn out to be normalized (sum or integrate to
unity) whether or not the corresponding prior distributions exhibit this
property. Normalization is required if a distribution fumction is to have

a proper probability interpretation. Some functions used as Bayesian priors
possess infinite norms and are referred to as improper. They are the subject
of some interpretational controversy but even these functions cause no trouble
in implementing Eqs. (31) through (33).

Bayes theorem is sometimes written for the continuous distribution case,
again making explicit reference to the history H of the problem, as
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p(A|DH) = L(A|DH)p(A[H) (34)

The constant of proportionality is established by demanding that the left side
of Eq. (34) integrate to one [note the equivalence of this to Eq. (33).]}. Equa-
tion (34) is a form very suitable for discussing the philosophy of Bayes method.
Thus, what one knows about the situation (the history H) motivates the selec-
tion of a particular statistical model. This model choice augmented by the
current observational results (the data D) fixes the likelihood function
L(AIDH). The likelihood modifies or shapes the prior distribution p(i|H) to
give within a multiplicative constant factor the posterior distribution
p(A|DH). What the prior is, is one's best assessment given previous exper—
ience H of the statistically weighted probable range of values expected to
include the true value of the model parameter. The posterior is the prior

as modified to reflect the impact of the new information D; i.e., the best
description given now both H and D. This can be an iterative procedure.

Thus the new history embraces both the o0ld history and the current data, the
current posterior becomes the new prior, and a new experiment may be conducted.
Operationally, this is straightforward enough. The part that is disquieting
for some and the area where real creative Input is required is selection or
specification of an appropriate prior distribution. The prior is often
described as subjective or as the observer's personal probability, and is
intended to represent true belief in the hypothesis or probable range of the
model parameter. This kind of language causes some people to reject the
Bayesian approach entirely because they feel that a technique to be used for
sclientific or engineering purposes must be objective or independent of who
implements it. The reader is urged not to be too concerned about this objec-
tion. Science, while seeking objectivity, does have its subjective aspects.
There seems to be a considerable need for dialogue before agreement on

basic issues can be reached. Closer to the problem at hand, the choice of

an appropriate statistical model to represent a reliability or life_testing
situation is itself a very subjective matter. A more fundamental aspect of
this issue is raised by de Finetti [12] who asserts that no probability

enjoys an existence independent of the perception of an observer. That is,
probability is intrinsically subjective by nature. De Finetti's thesis 1is

no less than revolutionary. Nevertheless, it has already attracted many
adherents and, of course, neatly disposes of many of the objections to the
Bayesian paradigm or world view. This is so because Bayes priors and pos—
teriors are nothing more than probabilites. Further discussion of the
differences between the classical and Bayesian views of probability is
presented in Appendix B.

3.3 Conjugate Distributions

Analytical life in mathematics, in statistics, and in the physical and
biological sciences is full of compromises. Thus, it is commonplace and usually
desirable to give up a bit of rigor in an argument or descripticn in favor of
tractable mathematics. Such is the case in Bayesian inference. One can aveid
tedious numerical procedures (although these are not so unpalatable in the
computer era) by discovering and making use of what are called conjugate dis-
tributions. This terminology refers to the situation where the Bayesian prior
and posterior distributions belong to the same family of functions. The pre-
sentation of examples of conjugacy is deferred to Section 4.0 and its subsections
where application examples arve discussed. A number of conjugate distributions
useful in connection with veliability and life-_testing problems are cataloged
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in Chapter 3 of Ref. 13. Conjugate distributions are associated with and
implied by the likelihod function appropriate to a given problem. Thus one
looks for structural features such as factors common to the likelihood and a
tentative prior so that their product is a similar mathematical entity. Sit-
uations for which conjugate distributions exist are also referred to as closged
under sampling. As has been mentioned, this kind of closure is more a conven~
ience than a fundamental concern. Many conjugate families are rich enocugh in
the properties of their members that any of a wide range of prior bellefs can
be quite adequately represented for the purposes of Bayesian inference.

3.4 Robustness

Shortly we shall be looking at examples of the use of the conjugate or
convenience priors discussed in the preceding section. Their use forces the
posterior distribution to be more strongly peaked or localized than the cor-
responding prior. This, of course, is the proper result of incorporating
the new data via the likelihood provided that a reasonable statistical model
has been advanced. However, there is nothing in the use of conjugate distri-
butions alone to call attention to a poor choice of model or prevent the
Bayesian statistician from being happily deceived by his own analysis in
such a case. This difficulty is nommally avolded by careful selection of a
suitable statistical model for the problem. It is also possible to work
with priors that are more forgiving. These functions can be shaped by the
current data to become either more peaked or more diffuse and are said to be
robust. The former outcomes (more localized posterior) lends support to the
choice of model. The reverse is true if the posterior is less localized
than the prior suggesting that a more appropriate statistical model be
looked for. Robustness is discussed further in the papers by Dempster,
Huber, and Rubin in Ref. 14,

3.5 Classical Limiting Behavior

One of the major practical advantages of the Bayesian inference method
is that it allows previous and new or current experience to be combined in a
natural way. Serious Bayesian protagonists also advance more fundamental
arguments that the Bayes approach overcomes certain logical inconsistencies
of classical methods. We leave this sort of proselytizing to others since
this report is concerned more with the mechanics than the justification of
Bayesian inference. The point to be made in this section is that if one
chooses to ignore previous history and focus attention only on the results
of a current set of observations, then the Bayesian and classical methods
can be compared in their processing of the same body of information. Bar-
tholomew [15] has reviewed some of the literature comparing Bayesian and
classical inference and addresses some remaining open questions. Under some
fairly general circumstances a prior distribution can be chosen such that
Bayesian inference has the frequency or confidence property and is said to
agree with the classical approach. Such a prior is called a noninformative
or ignorance prior since it is intended to represent the absence of previous
experlence. As an aid to constructing ignorance priors, Jeffreys [16] has
formulated an invariance principle dealing with the idea that ignorance
about a model parameter implies ignorance about any function of that parameter.
Thus admissible ignorance priors must lead to transformed distributions that
also appropriately convey ignorance. Bartholomew [15] considers situations
where application of these ideas alone does not bring classical and Bavesian
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inference into complete agreement. He argues that stopping criteria are
informative classically and must be mirrored by adjustments of the Bayesian
prior. This is true because different stopping conditions ordinarily leave
the Bayesian likelihood unchanged.

The discussion of this section is far from exhaustive. Its purpose,
however, is to suggest that evidence is accumulating that Bayesian inference
includes classical inference as a specilal case. The argument involves ignor-—
‘ance priors which often exhibit pathological mathematical properties. Appear-
ance of these infinities does little to help convince frequentists that they
should become Bayesians. The situation i1s largely artificial, however, since
it is difficult to envision designing an actual evaluation experiment wherein
one knows nothing at all about the hardware involved. Thus prior distributions
should normally be informative, noncontroversial, regular functions.
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4.0 APPLICATION EXAMPLES

We now turn to demonstrating the use of Bayes method via some examples
representative of reliability and life-testing situations. Two statistical
failure models are considered. These are the exponential and the Gamma-
distributed models. The exponential time-to-failure distribution is known
to be appropriate for complex equipment as well as for components such as
semiconductors, for which obsolescence usually preempts wearout as a concern.
In contrast, the more general gamma distribution can be peaked and localized
as 1s descriptive of many situations where a systematic loss of integrity
termed wearout leads to failures in service which are clustered in time. In
the case of the exponential model we consider only a failure-terminated test.

Raiffa and Schlaifer in Chapter 10 of Ref. 13 and Locks, in Chapter 7
of Ref. 17,consider also sampling from the exponential distribution involving
two types of time termination (predetermining total time on test or not).
All of these situations have the same Bayesian description as one can see
most easily because they have the same likelihood kernel [Eq. (11)]. 1In a
final example we interpret data directly from a success/failure point of view
and regard reliability as the random variable associated with a Bernoulli
process. All the examples follow the general procedural scheme presented in
Section 4.1.

4.1 General Procedural Fommat

In this section of the report we present a concise summary of the steps
involved in obtaining a Bayes solution to characterizing the parameters of a
statistical model given previous experience and current data. The notation is
tailored specifically to the case of a continuously distributed single model
parameter. For more than one parameter, make the replacement X - a,B,... as
appropriate. If the model parameter 1s discretely distributed, substitute
mass functions for density functions and replace integrations by sums.

Bayes method consists of:

1. Select a statistical model and obtain an expression for the
distribution of the stochastic variable x.

2. Specify a prior (marginal) distribution m(}) on the modeling
parameter \.

3. Using the result of step 1, express the conditional probability
of the experimental outcome (a set of observations xjy) with

respect to a given value of the modeling parameter. This is
the likelihood

L{Xx lXi) x P(xi!)\)

4, Multiply the results of steps 2 and 3 to obtain the joint proba-
bility of the experimental outcome and the parameter X:

g(xy,0) = T()plxA) .
Preceding Page Blank
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5. Integrate overall parameter space to determine the marginal
distribution m(x;) of the experimental outcome

m(xq) = f " g(xi,k}dl .
a

6. The quotient of steps 4 and 5 is the Bayesian posterior which
is the desired parameter distribution conditioned on the

observed data

g(Xi,K)
Ol = Sy -

Steps 1 and 2 are the essential subjective inputs to Bayesian inference.
The rest is straightforward mathematical manipulation which may or may not
involve the convenient data summary functions called sufficient statistics.
Step 3 may involve integration to find the cumulative time-to-failure distri-
bution to represent survival to time t. in treating censored data. The
integration of step 5 often involves familiar conjugate distributions but may
also be carried out numerically to reflect virtually any form of prior belief
(presented as a sketched pdf for example).

4.2 Exponential Time-to-Failure Distribution

In this section we treat as an application example the familiar exponen-—
tial reliability model already introduced in Section 2.1. The exponential
model is important because of its simplicity, wide applicability and use,
and unique status as the basis for the military handbook reliability predic-
tion methods for electronics components [18]. For comparison purposes we
shall consider from the Bayesian viewpoint the same problem Epstein and
Sobel treated classically in their celebrated 1953 paper [7]. Thus consider
r failures among n items in total time on test T [Eq. (12)].

Proceeding as described in the previous section: The time-to-failure
distribution is f(t) = X exp(-At) [Eq. (6d)]. As a prior distribution on
the parameter we select the improper ignorance prior w(A) = 1/) introduced
by Jeffreys [16] and used by others [19]. The likelihood in terms of the
sufficient statistics r and T for this problem has already been developed
as Eq. (11). Thus in terms of the notation of Section 4.1,

-AT

p(x,T|n) = AF e (35)

Combining Eq. (35) with the prior m(\) = 1/) yields the joint distribution
of the parameter and the data

g(r,T,0) = A5 L AT (36)

Integrating over all A, one obtains the distribution of the data r and T

m(r,T) = (r-1)! Tt ' (37)
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Dividing Eq. (36) by Eq. (37) yields finally the Bayeslan posterior

1 r .r-1 e—AT ) (38)

Tr(klr,T) = —(_r—-ﬁ.'_ T A

Equation (38) is a member (having parameters r and T) of the gamma family of
distributions and is plotted together with the improper prior 1/ in Fig. 2
for the case r = 10, T = 88,827 hours. The likelihood function p(r,TI)) for
this problem has already been displayed as Fig. 1.

[ )

—
by .
n

1

Posterior

Probability Density (10* hours)

T T -

[} i 2
Hazard Rate (per 10* hours)

Fig. 2 - Plot of the Bayesian ignorance prior n()) and posterior
n(llxi) based on observing r = 10 exponentially distributed
failures in T = 88,827 hours total time on test.

The gamma distribution is the conjugate family for sampling against an
exponential time-to-failure density. Thus repetition of the analysis of the
preceding paragraph carries the prior n(A) = I'(r',T') into the posterior
m(Ar,T) = I'(r'+r,T'+T). We chose to treat above the specilal case r' = T' = 0.
Let us consider a final vignette before closing this section. Lindley [20]
has stated that an ignorance prior ought to be appropriately diffuse, but
that otherwise its detailed shape is not very important provided data are
pientiful. This 1is justification for the mathematically convenient and
common practice of employing the uniform distribution to represent prior
ignorance on a parameter. The gamma family includes the uniform distribution
[T(x'=1,T'=0)] as a special case. This choice of prior leads to the posterior
distribution n(A|x,T) = I'(r+l,T). Comparing with Eq. (38) the implication
is that wniform m()\) is more informative than n()) = 1/A. This is most
easily recognized by comparing the coefficients of variation of n(x|r,T)
for the two cases. The mean, variance, and coefficient of variation of Eq.
(38) are

E(A) = /T , (39a)
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var() = EG2) - [EW]? = /12, (39b)

and

covin) = [var(W]Z/EQ) = 1//F . (39¢)

]

From Eq. (39c) as r increases the relative sharpness of the posterior distribu-
tion also increases.

4,3 Gamma Time~to-Failure Distribution

As the second application example we consider a set of failure times taken
to be identically gamma distributed as

o

B

o ta—l e—Bt (40)

f(t) = T(t[a,B) =

This is a slightly more general form of the gamma distribution than Eq. (38)
where the parameter r was integer (here o is not so restricted). Properties
of the gamma distribution are discussed in Chapter 4 of Ref. 2. Equation

(40) has been discussed as a statistical failure model by Gupta and Groll [21]
and found to represent the fatigue life of materials under repetitive loading
by Birnbaum and Saunders [22]. The gamma distribution includes the exponential
distribution as a special case (¢ = 1), In addition, also much like the
celebrated Weibull model [23], the gamma distribution has sufficient flexibil-
ity to characterize infant mortality (via 0 < @ < 1) and wearout (® > 1).
Wearout failures tend to be clustered in time and are often taken to be nor-
mally distributed. (Bayesian inference for the independent normal process is
discussed in detail in Chapter 11 of Ref. 13.) However, this author feels the
gamma distribution is more representative for two reasons -— it can be skewed
to the right matching a variety of wearout and fatigue data and its natural
range (0 { t { =) corresponds exactly to the range of lifetime data. For our
purposes the gamma statistical failure model is also more appealing than the
Weibull. This 1s because sufficient statistics exist for the former but not
the latter. I have not looked into whether conjugate Bayesian parameter
distributions exist for the gamma model (they do for the Weibull). However,
sufficient statistics contribute more strongly to the computational simplifica-
tion of a Bayesian inference problem than does the availability of a conjugate
description. We shall proceed with this application example using numerical
methods.

For illustrative purposes take the experimental outcome to be the complete
(uncensored) set of n = 20 mockup fallure data points generated by Monte Carlo
simulation and presented as Table 2. As before, the steps involved in obtaining
the Bayes posterior are given in Section 4.1. The gamma statistical model has
been selected and the time-to-failure probability density function displayed
as Eq. (40). To show how previous experience can be built into the Bayesian
description, imagine that the prior distributions on the shape parameter o and
the scale parameter B have been obtained using regression analysis methods
to analyze the outcome of an earlier life test on the same kind of hardware.
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Table 2. Uncensored synthesized time-to-failure data
representing sampling from a gamma distributed

parent population.

TIMES TO FAILURE ANCILLARY INFORMATION

| | |
| | !
N (Hours) | 5
l |
| 1337 2043 | n =20 Samples Placed on Test |
| 1650 2155 | l
| 1657 2190 I r = 20 Failures Observed |
| 1738 2323 | |
I 1754 2340 |  Sufficient Statistics: |
! 1798 2376 I |
] 1943 2459 | r=n=20 |
| 1999 2513 | |
t 2010 2561 | T, = 41,842 hours l
| 2031 2965 | |
I | T =1.857 x 1066 hours2® |
| | |

(Regression analysis as it relates to reliability problems, and particularly
the use of median ranks, is discussed in Ref. 8.) Standard regression analysis
produces as an output that the statistical model parameters are normally
distributed with specified mean and standard deviation. Thus, if we Identify
as the standard form of the normal distribution

1 B 2
N007) T T w32 ] “b

the prior densities on the model parameters o and B can be written

7 (a)

It

Na(ua,sa) (42a)
and
m(8) = NB(uB,cB) , (42b)

where from previous observation and classical inference

Hy = 25.2 (43a)

o, = 2.9 , (43b)

Mg = 0.0129 hours " R (43¢c)
and -1

op = 0.0015 hours . (434)

From Eq. (40) and the discussion of Section 2.2 the likelihood function or
joint probability of the data given specified model parameters is

25



n na N a-1 -8T
p(xila,B) = T £(ty) =B [F(a)] T e 0 ., (44)
i=1

Equation (44) is expressed in terms of the sufficient statistics

n=20 |, (45a)

n
Tg = ) ty = 41,842 hours (45b)

i=1

and n
T, = T ty= 1.857){1066 (hours)20 . (45¢)

i=1

and the notation (x;) of Section 4.1 to indicate their simultaneous specifica-
tion. Since Eqs. (42) are independent, the joint probability of the data and
the model parameters is

g(x4,0,8) = m(a)T(B)p(xs|a,B) . (46)

Using Eqs. (42) through (44) and numerically integrating Eq. (46) over all
parameter space for the particular sampling outcomes xj; displayed in Table 2
and summarized by Eqs. (45) yields

0

[ g(x4,a,8) dadB = 1,476x 10} (47)

n(xi) = f
B a

Equation (47) represents the a priori probability of realizing the experimental

outcome actually subsequently observed and 1s the proper normalization or

welghting factor required for the Bayesian posterior to have a true probability

interpretation. The posterior itself m(a,B|xq) is obtained by dividing

Eq. (46) by Eq. (47) and for the two-parameter gamma model is still a joint dis-

tribution function. To obtain a marginal posterior distribution on each para-

meter separately requires integration over the full range of the other parameter.

Thus finally

f Tr(a,lei) dB (48a)

o

n(a[xi)

and

ﬂ(B!xi) [ n(a,B!xi)da . (48b)
o

These integrations have been performed numerically. The results, together with
the corresponding priors [Eqs. (42)] are shown in Figs. 3 and 4. For comparison
with Eqs. (43) the means and variances of Eqs. (48) are

Ealx;) = 26.3 (49a)

Var(a|x;) = 4.45 (49b)
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E(B[xi) = 1.26:{10-2 hours ™! , (49¢)

and -6 -
Var(8]x;) = 1.06x10 hours * . (49d)

In comparing Eqs. (43) and (49) recall that the normal standard deviation is
the square root of the variance.
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Fig. 3 - Comparisdn of the Bayesian Fig. 4 - Comparison of the Bayesian
prior (Eq. (42a)] and prior (Eq. (42b)] and '
posterior (Eq. (48a)] of posterior (Eq. (48b)] of
the gamma failure model the gamma fajlure model
parameter o (using the parameter R (using the
data of Table 2.) data of Table 2.)

This second application example is a case where very little use has
been made of the pedagogic convenlences usually invoked in presentations of
Bayesian theory. It is hoped that this will help convince the reader that
Bayesian inference can be shaped to address his awkward real-life problems
rather than being limited in scope. As Bayes methods gain further acceptance
no doubt the necessary computer codes will become the readily available
commodity that more conventional statistics packages already are.

4.4 Bernoulli Process —— Reliability Measurement

In Section 4.2 we interpreted time-to-failure data to obtain a Bayesian
posterior distribution on the exponential model hazard rate ) [Eq. (38)].
This result may be combined with Eq. (6b) via random variable transformation
nethods to obtain equivalently that reliability itself is distributed as

r r-1 - :
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a result that is referred to as the negative~log gamma distribution. In prac-
tice it may be that a population of equipments is available for inspection
only on a limited opportunity basis. In such a case complete time-to-failure
data are not available. However, point observations of reliability can still
be made by interpreting the specification of the operational health of the
hardware as a set of Bernoulli trials (binomial sampling). That is, at some
time t' a total of n equipments are examined with the result that r of them
are seen to be failed and n-r unfailed. For an individual unit the probabil-
ity of successful operation is the reliability R [Eq. (3)] and the probability
of failure is 1-R. When appropriate statistical weight is given to the
number of ways a particular outcome can be realized (combinations of r from
n), one obtains the binomial distribution

n! (n-r) _m T
r! (n-r)! R (1-R)

, (51)

p(r|n,R) =

as the appropriate statistical model for this problem. The number of failures
r is a discrete random variable ranging from O to n and R [more specifically
R(t') here] is a parameter of the model. We will characterize R via Bayesian
inference; n is a fixed model parameter of no particular further concern.
Equation (51) is already a joint distribution embracing the information that

r failure events have occurred. The kernel or R dependence of the likelihood

is thus

olrln,R) « RO ()T . (52)

Use of Eq. (52) with its conjugate family (beta distribution) is discussed in
standard sources [l, 13]. We prefer here to deal with the ignorance prior

r -1
m(R) = L—Rln RJ . (53)

Equation (53) is the transformed analog of the A1 prior of Section 4.2 and
may also be seen to result from a noninformative experiment [Eq. (50) special-
ized to the case r = T = 0]. Combining Eqs. (52) and (53) and using the fact
that p(n) =1, the joint distribution is

g(n,r,R) = R0 (1op)T [-1ar]7 . (54)

As before, integration over the entire admissible parameter range (0 to 1 on R)
yields the probability of the particular experimental outcome. For illustra-
tive purposes let us again specialize to the case represented by the data of
Table 1. Thus taking n = 20 and r = 10 and numerically integrating Eq. (54),

we obtain

1
1(20,10) = f g(20,10,R) dR = 7.776 x 1077 . (55)
(o]

And finally combining Eqs. (54) and (55) the Bayesian posterior for this case
is

7(R|n=20,r=10) = (1.286x10% &% (1-R)'® [~1nr]™! . (56)
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Equation (56) is plotted as the solid curve in Fig. 5. For comparison purposes
we can look at the equivalent result [Eq. (50)] obtained by gamma sampling as
described in Section 4.2. That 1is, the datg of Table 1 can be interpreted as
a binomial sample (at the time t, of the et failure) from a Bernoulli
process as we have done in tkis section. Or the same fallure data can be
viewed as having been obtained by fixing r in advance and allowing T to be
the experimental random variable (gamma sampling from a Poisson process) per
Section 4.2. Equation (50) is the description of the latter case expressed
in reliability terms rather than as a statement about the hazard ratz ).

To make the desired comparison with Eq. (56), Eq. (50) must be specialized

to the time t = t, of binomial sampling. In addition, taking r = 10 and

from the Table 1 data ty = 6017 hours and T = 88,827 hours, Eq. (50) becomes

h(R) = (1.355x%10%) (~1nm)? R¥3:783 | (57)

Equation (57) is shown as the dashed curve plotted in Fig. 5. As is apparent
the two posterior distributions of R(t,) are quite similar.

4

BT: Bernoulli Trials

GS: Gamma Sampling

Probability Density

Reliability

Fig. 5 = Plot of the Bayesian posteriors [Eqs. (56) and (57)] on
reliability based on interpreting the Table 1 data as a
sequence of Bernoulli trials at time t,. or as a gamma
sampling outcome.
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5.0 CONCLUSIONS

Bayes theory 1is very appealing for use in treating reliability problems.
This 1is true in part because reliability issues are quite typically expressed
in terms of statistical failure models —-— the natural Bayes point of departure.
The ability of Bayesian methods to make constructive use of previous experience
is also of great benefit for statistical inference situations generally. This
1is especially true in the reliability and life-testing areas because so often
new, improved products are introduced to replace similar equipments for which
attributes data are already available. Another major advantage of Bayes
methods is that they make model parameter space directly accessible via the
prior and posterior distributions. Confidence statements are developed via
direct integration of these functions. The whole classical preoccupation with
the development of the statistical properties of estimators is avoided entirely.

This report, while necessarily limited in scope, has been structured to
touch on the philosophical basis of Bayes theory, to compare classical infer—
ence, to develop the operational structure of the method, and to address
relevant applications. Even though the focus of this has been the narrow one
of completing the specification of statistical or mathematical model parame-
ters using available data, to do justice to the task requires a more heroic
effort than this document represents. The reader new to Bayesian inference
may find that this report best serves as a study outline helping to place
the field and some of its possibilities in perspective.

Many frequentists reject the notion that probability is subjective and
object to the admissibility of unnormalized probability density functions as
Bayesian priors. This zuthor hopes to address the latter point elsewhere
[24]. As to the former —~- decide for yourself (some discussion appears in
Appendix B). A Bayes solution is often referred to as "learning from exper-
ience”. Thus one modifies his previous understanding of a situation by assim-
ilating new information to obdtain a revised impression. This, of course, goes
on every day without mathematical formalization. By basic human nature we are
all Bayesians.

Hopefully the discussion of application examples in Section 4 has helped
display the versatility of Bayes methods. Priors need not be conjugate, numer-
ical integration can be used as needed, even a digitized graph or sketch is a
perfectly acceptable format for introducing prior information.

preceding Page Blank
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APPENDIX A
A Probability Closure Theorem

We should like to show that Eq. (27) of the body of the text is not an

independent assertion but is implied by Eqs. (23) and (24). Consider an exclu-

sive and exhaustive set of uncertain events A, B, ... and some other uncertain
event E. Then the probability of E is

p(E) = p(E) x 1 . (Al)
But since A, B, ... are exclusive and exhaustive, Eq. (23) becomes
p(A or Bor ...) = p(A) + p(BY) + ... =1 . (A2)

Equation (A2) is correct whether event E also occurs or not. In particular,
if £ occurs,

p(A|E) + p(BIE) + ... =1 . (A3)

]

Substituting Eq. (A3) in Eq. (Al) vyields
p(E) = p(E)p(AlE) + p(E)p(B|E) + ... , (A4)

which, from the interchange symmetry of Eq. (24) [i.e., p(E and A) =
p(A and E)] becomes

p(E) = p(A)p(E|A) + p(B)p(E[B) + ... , (A5)

which is the desired result.




APPENDIX B
ol Subjective Versus Objective Probability

At the heart of the differences between frequentists and Bayesians is the
interpretation of probability. Classical statisticians view probability as a
substantive attribute of an object under study, a state function, objective
in the sense of measurable. Perhaps we should speak of the system under study
rather than simply the object. For example, in coin tossing, the probability
of obtaining heads does not depend on the design of the coin alone, but also
on establishing some statistically reproducible flipping procedure. Similarly,
the times to failure in a population life test depend on the conditions of use
as well as the design of the hardware. The occurrence of heads or the particu-
lar life-test-failure times also depends in detail on factors that remain un-
known to. us (flaws or asymmetries for example). Thus, the best that can be
managed by way of probability measurement is to replicate the observation, or
experiment, or chance setup (as it is sometimes referred to) hoping to symme-
trize in the long run the impact of the unknown factors. This is an effort to
eliminate systematic bias by homogenizing the representation of the phase space
(to borrow a term from statistical mechanics) of these quantities. The long
run frequency of occurrence of an event obtained in this way is taken to be the
measure of its probability for a single trial. This may seem to be entirely
objective and not dependent on who conducts the test. But there are also
subjective inputs or judgments to be made. For example, in carrying out
10,000 coin tosses to get a pretty good idea of the long run frequency of

turning up heads, are different coins interchangeable? If a single coin is

used, might it sustain damage that would progressively alter the property one

1s trying to measure? Or in the life testing example, if several equipments

are tested, are they really alike or is the survival property itself distributed
within the population? Another problem in practice is that in most situations
of interest one lacks the wherewithal to carry out an experiment heroic enough
to yield a statistically well-defined long run frequency.

In the preceding paragraph we have suggested that efforts to objectively
measure probability may not actually be successful. One can question whether
an entity can have an objectlve existence if it is unmeasurable. This doesn't
trouble Bayesians, for whom probabilities are subjective. Now let's turn the
argument around. Suppose we are dealing with a situation that cannot be repli-
cated and therefore is not describable in terms of a long run frequency. Does

it make sense to introduce probability into its description? To be specific,

suppose we try to assign a probability to the event that a designated indivi-
dual will receive the Nobel prize in physics next year. Or, we might like to
weigh the relative chances of half a dozen potential candidates. Selecting

such a list to begin with would elicit very different responses from people
with different backgrounds. A non—physicist may be hard put to name individuals
with much hope at all of receiving the award. On the other hand, an experienced
leader in the physics community, particularly someone close to one of the
successful, aggressively pursued subfields of the day, could probably generate

a very respectable candidate list. Still, dozens of similar groups of worthy
individuals might be identified by others. Individuals named on one of these
lists probably have much better chances for the prize than members of the
population at large. The outlook for persons named on many lists might be
brighter than that of individuals not so recognized. There are even repetitive
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aspects of the situation to assuage the classical statistician. Thus, one
knows historically how often the prize has gone to a woman; that spectroscop~
ists, solid state, and high energy physicists are more favored than acousti-
cians; and that one's great work 1s more frequently but not always done early
in life. Nevertheless, placing betting odds on Nobel candidates is largely a
process of processing information subjectively. A classicist might claim

that this {s pointless; the Bayesian will argue that progress can be made in
no other way. The reader is invited to ponder the issue, check the literature,
and sharpen his own interpretation. Is probability objective or subjective?
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